Instructions: Closed Book Exam. Please write detailed and correct answers.

- 1. Let $\alpha > 0$. Consider the graph Z_+ with weights $\mu_{n,n+1}^{\alpha} = \alpha^n$.
 - (a) (5 points) Show the graph (Z_+, μ^{α}) has controlled weights. Does it have bounded weights?
 - (b) (10 points) Show that the graph is recurrent if and only if $\alpha \leq 1$.
- 2. Let X_n be a random walk on \mathbb{Z}^3 with natural weights. Let T_0 be the hitting time of 0. Let $n \geq 1$, $A = \mathbb{Z}^3 \setminus \{0\}$. Let $h_n, h : \mathbb{Z}^3 \to [0, 1]$ be given by

$$h_n(x) = \mathbf{P}^x(T_0 \ge n) = \mathbf{P}^x(X_k \in A, 1 \le k \le n)$$

and

$$h(x) = P^x(T_0 = \infty) = P^x(X_n \in A, \text{ for all } n \ge 0).$$

- (a) (8 points) Show that $h_n = Q^n 1_A$ and h = Qh, where Q is the restriction of P onto A.
- (b) (2 points) Suppose $\alpha = \sup_{x \in A} h(x)$, show that $0 < \alpha \le 1$ and $h \le \alpha 1_A$
- (c) (3 points) Using (i) and (ii), conclude that $h \leq \alpha h_n$
- (d) (2 points) Conclude that $\max_{x \in \partial A} h(x) \neq \sup_{x \in A} h(x)$.
- 3. Consider Γ to be the join of two copies of Z^3 at their origins. Write $Z^3_{(i)}$, i=1,2 the two copies, and 0_i for their origins. Let

 $F = \{X \text{ is ultimately in } Z_{(1)}^3\}$

and let $h(x) = P^x(F)$.

- (a) (3 points) Show that h is harmonic,
- (b) (4 points) Show that $h(x) \geq \mathbb{P}^x(X \text{ never hits } 0_1)$ for $x \in \mathbb{Z}_{(1)}^3$.
- (c) (4 points) Show that $h(x) \leq P^x(X \text{ hits } 0_2)$ for $x \in \mathbb{Z}^3_{(2)}$.
- (d) (4 points) Decide whether Γ has the Liouville Propety: All bounded harmonic functions on Γ are constant.
- 4. Let $H^2(V) = \{ f \in C(V) : \mathcal{E}(f, f) < \infty \}$ where

$$\mathcal{E}(f,g) = \frac{1}{2} \sum_{x \in V} \sum_{y \in V} \mu_{xy} (f(x) - f(y)) (g(x) - g(y)) \text{ and } \parallel f \parallel_{H^2} = \mathcal{E}(f,f) + f(\rho)^2,$$

for $f,g\in C(V)$ and (fixed) $\rho\in V$. Show that $H^2(V)$ is a Hilbert space.